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Abstract. We generate exact solutions to the nonlinear diffusion equation U, = V . (u-"'Vu) 
which are not similarity solutions. Some applications and generalizations are indicated. 

1. Introduction 

It has been noted by Oron and Rosenau [ 11 and by Hill and Hill [2] that the nonlinear 
diffusion equation 

Ju 
at JX 

possesses solutions of the form 

U = ( n o ( x ) + a , ( x ) t ) 2 .  

These solutions are not in general classical (group invariant) similarity solutions. The 
purpose of this note is to extend these results and to put them into a broader context. 

We start with the multidimensional version of (l.l), namely 

au - = v .  (u-1'2vu). (1.2) 
Jf 

We note that applications of (1.2) arise in models for plasma diffusion [3] and for 
liquid helium [4]. If we write 

U = w2 

then we obtain from (1.2) an equation in which the nonlinearity is of quadratic type, 
namely 

J W  2 w - = v  w. 
at 

This may be contrasted with the usual way in which the more general equation 

Ju 
J t  
- = v .  (U"VU) 

(1.3) 

(1.4) 
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is written in the quadratically nonlinear form 

JU 1 
J i  m 
-= uV2u+-IVu12 ( 1 . 9  

by the substitution 
= IJllm. 

Forms such as (1.5) have been exploited by Galaktionov and Posashkov [5,6] in 
deriving exact solutions to such equations by an approach which is slightly different 
from that adopted here, but which also relies on quadratic nonlinearities. 

The generalization of (1.3) which follows from writing U = w'/(" '+')  in . (1.4) reads 

and this is not in general of the required form. Alternatively, we may note that 
substituting u = W-'" into (1.4) yields 

J i  

which in general contains cubic nonlinearities. The case m = -f is special in that (1.4) 
may then be written in more than one form in which the nonlinearities are quadratic; 
here we shall exploit the form (1.3). 

We may seek a solution to (1.3) of the form 

w = a,(x)+ a l ( x ) t  ( 1.6) 

which satisfies (1.3) provided that a ,  and a ,  satisfy 

V a l  = a: 

V2ao = a o a l .  

(The fact that this system of equations for a, and a, is not overdetermined results 
from the quadratically nonlinear form of (1.3).) Defining 'p by the substitution ao= 'pa, 
transforms (1.8) to 

V .  ( a : V ' p ) = o  (1.9) 

where we have made use of (1.7). We shall now consider various special cases. 

2. Radially symmetric solutions 

Considering the case in which (1.2) is specialized in N-dimensions to 

we amve at 

d r  

- 1 d  -( r N - 1 2 )  = aoa, .  
d r  IN-] 
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Equation (1.9) then implies that 

where Po is an arbitrary constant of integration. 

special exact solution 
The general solution to (2.2) cannot be obtained explicitly for most N, but the 

a1=2(4-N)r-’ 

is easily derived. For N # 6 this leads to the general solution to (2.3) in the form 

a, = Ai-’+ Br4-N 

where A and B are arbitrary constants, while for N = 6 we obtain 

a, = A F 2 +  Br-2 In r. 

We may without loss of generality set A = 0 by a translation of r, and we then obtain 

N 2 6  

N = 6  ~ = ( B r - ~ I n r - 4 r - ~ t ) ~  

U = ( Br4-N + 2(4 - N) r-2t)2 

which give similarity solutions of the form 

) = t2(4-N)/(6-N) 1/(6-N) N # 6  f ( r l 1  
U = ,-‘6‘f”f( r/e4‘f 8) .  N = 6  

In general, however, solutions to (2.2) and (2.3) need not correspond to group invariant 
solutions of (2.1). 

3. Ooe-dimensional solutions 

We now consider the one-dimensional case (1.1) discusssed in [1,2]. We then have 

d2a, _- 
dX2 - a: 

d’ao _- dX2 - aoal. 

The general solution to (3.1), (3.2) may be obtained in the form 

where ao, a,, Po and PI  are arbitrary constants of integration, with 

_=_  dQ P o  
dx a:‘ 
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Part of the particular importance of this case lies in a non-local transformation 
which maps solutions to (1.1) of this form into mass preserving solutions of the equation 

-=-( au  a u-3/2- ;;). 
a T  ax (3.3) 

Such solutions are of importance in many applications. We seek a solution to (3.3) 
subject to the conditions 

asIXl+m u+o 
such that the total mass 

m 

U d X  = M 

is a fixed constant. Writing 
X 

u=1/u x = I-, U(X', T) dX'  f=T 

it may then be shown (as in [7]) that we obtain (1.1) subject to the conditions 

asx+O+ u + + m  

a s x + M -  U -* +m. 

In order for our solution 

w =  a o ( x ) + n , ( x ) f  

to satisfy (3.5) we need 

where the constant 

is given by 

(3.4) 

(3.5) 

(3.7) 

If we take a,-0 then the solution would transform under (3.4) to the usual instan- 
taneous source similarity solution to (3.3). However, this solution may be generalized 
to give a non-self-similar solution by taking ao# 0. Hence we have 
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By translating f by a, we may without loss of generality take a, = 0 to give 

For the derivation of this solution to be consistent we require that 
I / 7  w = u " -  

be the positive square root; in other words we need w > 0 which requires that t >  f,, 
where 

Because (1.1) is invariant under translations of t this constraint causes no difficulty in 
the interpretation of the solution. 

We note that 

M 2 2  au a t x = -  u = a , t  - - = 2 P , f  
2 ax 

0~~~~~ ~ ~ ~ I L - . ~  I. C ~ . .  irom wnicn 11 ioiiows ihai ihe inverse o f the  iransformaiion (3.4) may be wriiien as 

T =  f X = /Il2 u(x', f )  dx'+- 2 P O  f U =  l / u  
a, 

This expression for X may be shown to lead to 

where the + sign holds for x c M / 2  and the - sign holds for x > M / 2 ;  hence X may 
easily be written as a function of a ,  and f. 

The singularity in the behaviour at t = 1, takes the following form (we assume that 
P0>0): 

giving 
-2/7 

a s X + X , +  U - (g) (7(X - X,)) -6'7 at T = f, 

where 
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This follows because 

a s x + o +  at t = 1,. 

We also have 

a t T = t ,  X<X, U = 0. 

Again taking Po> 0 we may obtain 

a sX++cc  

as X +  -CO, T >  t, 

U - (3X2/Z( T +  ic))-2/3 

U-(3X2/2(T- t J - 2 ’ 3 .  

Finally, as T + + m  the behaviour is given, as expected, by the instantaneous source 
similarity solution 

U- T-2(a:+3X2/27-‘-2/3. 

4. Multidimensional solutions 

These solutions must satisfy (1.7) and (1.8). The difficulty in constructing solutions 
explicitly lies with (1.7); equation (1.8) is linear in a,,. Here we note two simple families 
of solutions in two dimensions. 

(i) Taking the one-dimensional solution 

a, = 6/x2 

equation (1.8) becomes 

a2an a2an 6a, -+--- 
ax2 ay2-  xZ 

from which many types of solution are easily constructed. 
(ii) Taking the cylindrically symmetric solution 

a,=4/r2 

gives 

Writing x* =In r. y* = 0 gives the Helmholtz equation 

a2ao a2au - +-=4a,. 
ax*2 ay*2 

Hence genuinely multidimensional solutions to (1.2) may easily be constructed 
using simple solutions to (1.7). 

S. Discussion 

There is a wide range of possible extensions to this approach, and we shall simply 
give some examples. 
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First, the inhomogeneous equation 

evidently also has solutions of the form 

U = ( a o ( x ) + a , ( x ) t ) 2 .  

Indeed the method generalizes to any equation of the form 

J u  - = 2[ u’/2, X I  
J t  

where the spatial operator 2 acts linearly on U’/’. A further example is thus provided 
by the reaction-diffusion equation 

Ju - = v .  (u-”2Vu)+(Iul/2+P 
J t  

where (I and p are constants. 
The nonlinear wave equation 

v . (u - l / ’ vu)  
J2U 

Jf’ 
-= 

has solutions of the more general form 

U = (ao (x )  + a , ( x ) t +  a2(x)t2)’. 

Writing U = w2 gives 

an equation with quadratic nonlinearities, and we obtain the system 
V2az =6a:  V 2 a ,  = 6a,a2 V2ao = a: + 2a0a2. 

Another nonlinear wave equation 

becomes on writing U = w3 an equation with cubic nonlinearities: 

and admits solutions of the form 

U = (ao (x )+a , (x ) t ) ’  

v2al =2a:  v 2 a o  = 2aoa: 

with 

In each case the form of solution is chosen to ensure that the governing system for 
the x-dependent coefficients is not overdetermined. It is hoped that such examples 
give some indication of the possible range of applications of techniques such as we 
have used here. 
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While our solutions are not in general group invariant solutions, they may be put 
in the framework of non-classical similarity solutions outlined by Olver and Rosenau 
[8]. Thus the solution (5 .1)  corresponds to a side condition 

J2 - (u”2 )  = 0. 
J f 2  

However, the difficulty with such approaches lies in recognizing which side conditions 
will lead to non-trivial solutions. 
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